Example: A BJT Circuit
in Saturation

Determine all currents for the BJT in the circuit below.

Hey! I remember this circuit, its just like a previous example. The BJT is in active mode!

Let's see if you are correct! ASSUME it is in active mode and ENFORCE $\mathrm{V}_{C E}=0.7 \mathrm{~V}$ and $i_{C}=\beta i_{B}$.

The B-E KVL is therefore:
$5.7-10 i_{B}-0.7-2(99+1) i_{B}=0$

Therefore $i_{B}=23.8 \mu \mathrm{~A}$

See! Base current $i_{B}=23.8 \mu \mathrm{~A}$, just like before. Therefore collector current and emitter current are again $i_{C}=99 i_{B}=2.356 \mathrm{~mA}$ and $i_{E}=$ $100 i_{B}=2.380 \mathrm{~mA}$. Right ?!

Well maybe, but we still need to CHECK to see if our assumption is correct!

We know that $i_{B}=23.8 \mu \mathrm{~A}>0^{\vee}$, but what about $V_{C E}$?
From collector-emitter KVL we get:

$$
10.7-10 i_{C}-V_{C E}-2 i_{E}=0
$$

Therefore,

$$
V_{C E}=10.7-10(2.36)-2(2.38)=-17.66 \vee<0.7 \vee X
$$

Our assumption is wrong! The BJT is not in active mode.
In the previous example, the collector resistor was 1 K , whereas in this example the collector resistor is 10K. Thus, there is 10X the voltage drop across the collector resistor, which lowers the collector voltage so much that the BJT cannot remain in the active mode.

Q: So what do we do now?

A: Go to Step 5; change the assumption and try it again!

Lets ASSUME instead that the BJT is in saturation. Thus, we ENFORCE the conditions:

$$
V_{C E}=0.2 \vee \quad V_{B E}=0.7 \mathrm{~V} \quad V_{C B}=-0.5 \mathrm{~V}
$$

Now lets ANALYZE the circuit!
Note that we cannot directly
determine the currents, as
we do not know the base
voltage, emitter voltage, or
collector voltage.

Q: So, how the heck do we ANALYZE this circuit!?

A: Often, circuits with BJTs in saturation are somewhat more difficult to ANALYZE than circuits with active BJTs. There are often many approaches, but all result from a logical, systematic application of Kirchoff's Laws!

ANALYSIS EXAMPLE 1 - Start with KCL

We know that $i_{B}+i_{C}=i_{E}(K C L)$

But, what are i_{B}, i_{C}, and i_{E} ??

Well, from Ohm's Law:

$$
i_{B}=\frac{5.7-V_{B}}{10} \quad i_{C}=\frac{10.7-V_{C}}{10} \quad i_{E}=\frac{V_{E}-0}{10}
$$

Therefore, combining with KCL:

$$
\frac{5.7-V_{B}}{10}+\frac{10.7-V_{C}}{10}=\frac{V_{E}}{10}
$$

Look what we have, 1 equation and 3 unknowns.
\longrightarrow We need 2 more independent equations involving
V_{B}, V_{C}, and V_{E} !

Q: Two more independent equations!? It looks to me as if we have written all that we can about the circuit using Kirchoff's Laws.

A: True! There are no more independent circuit equations that we can write using KVL or KCL! But, recall the hint sheet:
"Make sure you are using all available information".
There is more information available to us - the ENFORCED conditions!

$$
\begin{array}{ll}
V_{C E}=V_{C}-V_{E}=0.2 & \\
V_{B E}=V_{B}-V_{E}=0.7 & \square V_{B}+0.2 \\
V_{B}=V_{E}+0.7
\end{array}
$$

Two more independent equations! Combining with the earlier equation:

$$
\frac{5.7-\left(0.7+V_{E}\right)}{10}+\frac{10.7-\left(0.2+V_{E}\right)}{10}=\frac{V_{E}}{10}
$$

One equation and one unknown! Solving, we get $V_{E}=2.2 \mathrm{~V}$.

Inserting this answer into the above equations, we get:

$$
\begin{gathered}
V_{B}=2.9 \mathrm{~V} \quad V_{C}=2.4 \mathrm{~V} \\
i_{C}=0.83 \mathrm{~mA} \quad i_{B}=0.28 \mathrm{~mA} \quad i_{E}=1.11 \mathrm{~mA}
\end{gathered}
$$

ANALYSIS EXAMPLE 2 - Start with KVL

Note the ENFORCED conditions are included in these KVL equations.

Simplifying, we get these 2 equations with 3 unknowns:

$$
\begin{aligned}
& 5.0=10 i_{B}+2 i_{E} \\
& 10.5=10 i_{C}+2 i_{E}
\end{aligned}
$$

We need one more independent equation involving i_{B}, i_{C}, and i_{E}.

Try KCL!

$$
i_{B}+i_{C}=i_{E}
$$

Inserting the KCL equation into the 2 KVL equations, we get:

$$
\begin{aligned}
& 5.0=12 i_{B}+2 i_{C} \\
& 10.5=2 i_{B}+12 i_{C}
\end{aligned}
$$

Solving, we get the same answers as in analysis example 1.

Lesson: There are multiple strategies for analyzing these circuits; use the ones that you feel most comfortable with!

However you ANALYZE the circuit, you must in the end also CHECK your results.

First CHECK to see that all currents are positive:
$i_{C}=0.83 \mathrm{~mA}>0 \vee i_{B}=0.28 \mathrm{~mA}>0 \vee i_{E}=1.11 \mathrm{~mA}>0 \vee$ Also CHECK collector current:

$$
i_{C}=0.83 \mathrm{~mA}<\beta \mathrm{i}_{\mathrm{B}}=27.7 \mathrm{~mA}
$$

Our solution is correct !!!

